## USER MANUAL Z-D-IN

## SENECA s.r.I.

## Via Austria 26, PADOVA - ITALY

Tel. +39.049.8705355-8705359 Fax. +39.049.8706287

## Web site: www.seneca.it

$$
\begin{aligned}
& \text { Technical assistance: supporto@seneca.it (IT), support@seneca.it (Other) } \\
& \text { Commercial reference: commerciale@seneca.it (IT), sales@seneca.it } \\
& \text { (Other) }
\end{aligned}
$$

This document is property of SENECA srl. Duplication and reprodution are forbidden, if not authorized. Contents of the present documentation refers to products and technologies described in it. All technical data contained in the document may be modified without prior notice Content of this documentation is subject to periodical revision.

To use the product safely and effectively, read carefully the following instructions before use. The product must be used only for the use for which it was designed and built. Any other use must be considered with full responsibility of the user. The installation, programmation and set-up is allowed only for authorized operators; these ones must be people physically and intellectually suitable. Set up must be performed only after a correct installation and the user must perform every operation described in the installation manual carefully. Seneca is not considered liable of failure, breakdown, accident caused for ignorance or failure to apply the indicated requirements. Seneca is not considered liable of any unauthorized changes. Seneca reserves the right to modify the device, for any commercial or construction requirements, without the obligation to promptly update the reference manuals.

No liability for the contents of this documents can be accepted. Use the concepts, examples and other content at your own risk. There may be errors and inaccuracies in this document, that may of course be damaging to your system. Proceed with caution, and although this is highly unlikely, the author(s) do not take any responsibility for that. Technical features subject to change without notice.

| Date | Revision | Notes |
| :--- | :--- | :--- |
| $03 / 08 / 2016$ | 2 | Rewriting |
| $13 / 01 / 2022$ | 3 | Corrected the bytes of register 40010 |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |

Table of Contents
SENECA Z-D-IN ..... 4

1. INTRODUCTION ..... 5
1.1. FEATURES ..... 5
2. FEATURES ..... 5
3. INPUT CONNECTIONS ..... 7
4. DIP-SWITCHES TABLE ..... 8
5. MODBUS RTU PROTOCOL ..... 9
5.1. ABBREVIATION USED ..... 9
5.2. MODBUS REGISTER ADDRESSES. ..... 10
6. LEDS FOR SIGNALLING ..... 14
7. FILTER ..... 14
8. EASY SETUP ..... 15

## Seneca Z-D-IN

## CAUTION!

UNDER ANY CIRCUMSTANCES, SENECA S.R.L. OR ITS SUPPLIERS SHALL NOT BE RESPONSIBLE FOR LOSS OF RECORDING DATA/INCOMES OR FOR CONSEQUENTIAL OR INCIDENTAL DAMAGE DUE to neglect or reckless mishandling of Z-D-IN, even though seneca is well aware of THESE POSSIBLE DAMAGES.

SENECA, ITS SUBSIDIARIES, AFFILIATES, COMPANIES OF THE GROUP, ITS SUPPLIERS AND RETAILERS SHALL NOT GUARANTEE THAT THE FUNCTIONS WILL SATISFY COMPLETELY CUSTOMER'S EXPECTATIONS OR THAT Z-D-IN, THE FIRMWARE AND THE SOFTWARE SHALL HAVE NO ERRORS OR WORK CONTINUOUSLY.

## 1. Introduction

The Z-D-IN module acquires 5 single-ended digital signals, then converts them to a digital format (IN 1-5 state).

The supported communication protocol is Modbus RTU.
The following counters are available:

4 counters at 16 bit

1 counter at 16/32 bit (configurable).

### 1.1. Features

- Acquisition of digital signals from sensor: Reed, NPN, PNP, Proximity, contact, etc...
- Counters are saved to a non volatile memory (NVM)
- Input signals can be filtered
- Pulse counters for digital signals, with max frequency equal to: 100 Hz for 16 bit-registers (the signal is acquired from IN1-4); 10kHz for 32bit-register IN5
- Node address and baud-rate configurable from Dip-Switches
- RS485 serial communication with MODBUS-RTU protocol.


## 2. Features

| INPUT | 5 |
| :--- | :--- |
| Number | Configurable between: 1 [ms] and $250[\mathrm{~ms}]$ |
| Filter | The sensor is detected «closed» if: acquired signal voltage >12 Vdc <br> and acquired signal current $>3 \mathrm{~mA}$ |
| Sensor=closed | The sensor is detected «open» if: acquired signal voltage <10 Vdc <br> and acquired signal current <2 mA |
| Sensor=open |  |

CONNECTIONS

| RS485 interface | IDC10 connector for DIN 46277 rail (back-side panel) |  |  |
| :--- | :--- | :---: | :---: |
| 1500 Vac ISOLATIONS |  |  |  |
| Between: power supply, ModBUS RS485, digital inputs |  |  |  |



POWER SUPPLY

| Supply voltage | $10-40 \mathrm{Vdc}$ or $19-28 \mathrm{Vac}(50 \mathrm{~Hz}-60 \mathrm{~Hz})$ |
| :--- | :--- |
| Power <br> consumption | Min: $0.5 \mathrm{~W} ;$ Max: 2.5 W |

The power supply transformer necessary to supply the module must comply with EN60742 (Isolated transformers and safety transformers requirements). To protect the power supply, is recommended to install a fuse.

## 3. Input connections

Power on the module with < 40 Vdc or < 28 Vac voltage supply. These upper limits must not be exceeded to avoid serious damage to the module.


## USER MANUAL - Z-D-IN

## 4. Dip-switches table

Power off the module before configuring it by Dip-Switches to avoid serious damage due to electrostatic discharges.

In the following tables: box without circle means Dip-Switch=0 (OFF state); box with circle means Dip-Switch=1 (ON state).


## 5. Modbus RTU protocol

All registers are "Holding register" (Read Modbus function 3) with the convention that the first register is the 40001 address.

The following Modbus functions are supported:

Read Modbus Register (function 3)
Write Single Modbus Register (function 6)
Write Multiple Modbus Registers (function 16)
All values in 32 bits are stored into 2 consecutive registers
For more info refers to:
http://www.modbus.org/specs.php

### 5.1. Abbreviation used

In the following table this abbreviations are used:

| "MS" = Most significant |
| :--- |
| "LS" = Less significant |
| "MSB" = Most significant Bit |
| "LSB" = Less significant Bit |
| "MSW" = Most significant Word (16 bits) |
| "LSW" = Less significant Word (16 bits) |
| "R" = Read only register |
| "RW" = Read and write register |
| "Unsigned 16 bits" = Unsigned 16 bits register |
| "Signed 16 bits" = 16 bits register with sign |
| "Float 32 bits" = Floating point single precision 32 bits (IEEE 754) register |
| "Ox" = Hexadecimal Value (example 0x1234 = 4660 decimal) |
| "Ob" = Binary Value (example 0b1110 = 14 decimal) |

Default communication parameters are 38400 baud, 8bit, parity None, 1 stop bit.

### 5.2. Modbus Register Addresses

| Register Name | Comment | Regist er Type | R/W | Default value or Start Value | Modbus Address | Modbus Offset Address |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MachinelD | Module ID code | Unsigne d 16 bits | R | - | 40001 | 0 |
| Inputs Overflows | Digital inputs $1 . .5$ status value And Overflows <br> Bit $0(\mathrm{LSB})=\operatorname{IN} 1$ status <br> Bit $1=$ IN2 status <br> Bit $2=$ IN3 status <br> Bit $3=\operatorname{IN} 4$ status <br> Bit $4=$ IN5 status <br> For example if the register value is: 29 decimal $=$ <br> (MSB)0000 00000001 1101(LSB) <br> binary $\begin{aligned} & \text { IN1 }=1 \\ & \text { IN2 }=0 \\ & \text { IN3 }=1 \\ & \text { IN4 }=1 \\ & \text { IN5 }=1 \end{aligned}$ <br> Bit $8=$ Overflow/Underflow Counter 1 <br> Bit $9=$ Overflow/Underflow <br> Counter 2 <br> Bit $10=$ Overflow/Underflow Counter 3 <br> Bit $11=$ Overflow/Underflow <br> Counter 4 <br> Bit $12=$ Overflow/Underflow Counter 5 <br> Overflow/Underflow bits are set from the firmware when the counter pass from 65535 to 0 (overflow) or from 0 to 65535 (underflow) | Unsigne d 16 bits | R/W | 0 | 40002 | 1 |


|  | Overflow bits can be written to 0 for reset. |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Counter 1 | 16 bit counter (from 0 to 65535 ) The value is stored into a non volatile RAM (FeRAM). <br> The Counter value can be written | Unsigne d 16 bits | R/W <br> (Non volatile) |  | 40003 | 2 |
| Counter 2 | 16 bit counter (from 0 to 65535) The value is stored into a non volatile RAM (FeRAM). <br> The Counter value can be written | Unsigne d 16 bits | R/W (Non volatile) |  | 40004 | 3 |
| Counter 3 | 16 bit counter (from 0 to 65535) The value is stored into a non volatile RAM (FeRAM). <br> The Counter value can be written | Unsigne d 16 bits | R/W (Non volatile) | - | 40005 | 4 |
| Counter 4 | 16 bit counter (from 0 to 65535) The value is stored into a non volatile RAM (FeRAM). <br> The Counter value can be written | Unsigne d 16 bits | R/W (Non volatile) | - | 40006 | 5 |
| Counter 5 (16 bit mode) | 16 bit counter (from 0 to 65535) The value is stored into a non volatile RAM (FeRAM). <br> The Counter value can be written. If configured to 32 bit use the registers: <br> 40019 (LSW) <br> 40020 (MSW) | Unsigne d 16 bits | $\begin{gathered} \hline \text { R/W } \\ \text { (Non volatile) } \end{gathered}$ |  | 40007 | 6 |
| Filter | Filter (from 1 to 254) in ms applied to all input-signals (except IN5 if bit7 of the register 40009 is $=1$ ). Limit values: <br> if $=1$ [ms]=filtering noise with frequency $>1 \mathrm{kHz}$ (max frequency allowed 1 KHz ) <br> if $=254[\mathrm{~ms}]=$ filtering noise with frequency $>4 \mathrm{~Hz}$ (max frequency allowed 4 Hz ) |  | R/W ( ${ }^{*}$ ) (Non volatile) | 3 [ms] | 40008 | 7 |
| Configuration Flags | Bit 0 Input Logic <br> If Bit0 $=0$ Direct Input logic ( $0=$ open, $1=$ close) <br> If Bit0 $=1$ inverse Input logic ( $1=$ open, $0=$ close) <br> Bit 1 Count mode <br> If Bit1 $=0$ upcounter <br> If Bit1 = 1 downcounter <br> Bit 2 RS485 Delay <br> If Bit2=0 no pause between the end of Rx message and the start of Tx message <br> If Bit2=1 insert a pause between the end of Rx message and the start of Tx message <br> Bit 3 RS485 Parity Bit <br> If Bit3=0 no parity <br> If Bit3=1 bit parity ON | Unsigne d 16 bits | R/W (*) (Non volatile) | 0 | 40009 | 8 |

## USER MANUAL - Z-D-IN

|  | Bit 4 RS485 Parity Type <br> If Bit4=0 Even Parity <br> If Bit4=1 Odd Parity <br> Bit 5 Not Used <br> Bit 6 Not Used <br> Bit 732 Bit IN5 mode <br> If Bit7=0 IN5 is at 16Bit (default) <br> If Bit7=1 IN5 is at 32Bit (and the <br> filter is disabled, max 10 KHz Input <br> mode) <br> Bit8.. 15 Not Used |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Baud Rate Node Address | Bit0.. 7 Baud rate for RS485 $\begin{array}{lr} 0=4800 ; \quad 1=9600 ; \quad 2=19200 ; \\ 3=38400 ; \quad 4=57600 ; \quad 5=115200 ; \\ 6=1200 ; 7=2400 \end{array}$ <br> Bit $0 . .7$ (LSB) Modbus Node Address <br> Bit $9 . .15$ (MSB) Baud Rate for RS485 <br> from 1 to 255 | Unsigne d 16 bits | R/W (*) (Non volatile) | 38400 baud Address 1 | 40010 | 9 |
| Bit Command Register | Bit Command Register <br> Bit 0 (LSB) if written to 1 : <br> Save configuration in memory (EEPROM). The content of 40008, 40009, 40010 registers is overwritten, respectively, in the 40072, 40073, 40074 registers (these ones are in memory EEPROM): <br> Bit 1 if written to 1 : <br> Reset Command <br> Bit 2...15: <br> Not used | Unsigne d 16 bits | R/W | 0 | 40011 | 10 |
| FW Revision | Firmware internal code | Unsigne d 16 bits | R | - | 40013 | 12 |
| Counter 1 copy | 16 bit counter (from 0 to 65535) The value is stored into a non volatile RAM (FeRAM). <br> The Counter value can be written | Unsigne d 16 bits | R/W <br> (Non volatile) | - | 40015 | 14 |
| Counter 2 copy | 16 bit counter (from 0 to 65535) The value is stored into a non volatile RAM (FeRAM). <br> The Counter value can be written | Unsigne d 16 bits | R/W <br> (Non volatile) | - | 40016 | 15 |
| Counter 3 copy | 16 bit counter (from 0 to 65535) The value is stored into a non volatile RAM (FeRAM). <br> The Counter value can be written | Unsigne d 16 bits | R/W <br> (Non volatile) | - | 40017 | 16 |

$\left.\begin{array}{|l|l|l|c|c|c|c|}\hline \begin{array}{l}\text { Counter 4 } \\ \text { copy }\end{array} & \begin{array}{l}16 \text { bit counter (from 0 to 65535) } \\ \text { The value is stored into a non } \\ \text { volatile RAM (FeRAM). } \\ \text { The Counter value can be written }\end{array} & \begin{array}{l}\text { Unsigne } \\ \text { d } 16 \text { bits }\end{array} & \begin{array}{c}\text { R/W } \\ \text { (Non volatile) }\end{array} & - & 40018 & 17 \\ \hline \begin{array}{l}\text { Counter 5 } \\ \text { (32 bit mode) }\end{array} & \begin{array}{l}32 \text { bit counter (from 0 to } \\ \text { 4294967295) } \\ \text { The value is stored into a non } \\ \text { volatile RAM (FeRAM). } \\ \text { The Counter value can be written. }\end{array} & \begin{array}{l}\text { Unsigne } \\ \text { d 16 bits }\end{array} & \begin{array}{c}\text { R/W } \\ \text { (Non volatile) }\end{array} & - & 40019 & 18-19 \\ \text { (LSW) } \\ 40020 \\ \text { (MSW) }\end{array}\right]$
$R / W\left({ }^{*}\right)=$ the register value is written in not volatile memory only after that the Bit Command Register is set to 1

## USER MANUAL - Z-D-IN

## 6. LEDs for signalling

In the front-side panel there are 9 LEDs and their state refers to important operating conditions of the module.

| LED | LED status | Meaning |
| :--- | :--- | :--- |
| PWR | Constant light | The power is on |
|  | Blinking light | The module has at least one of the errors/overflows described in <br> RS485 Registers table |
|  | Constant light | Module failure |
|  | Constant light | Verify if the bus connection is corrected |
| TX | Blinking light | The module sent a data packet |
|  | Constant light | Verify if the bus connection is corrected |
|  | Constant light | IN1-5 state equal to «1» |
|  | No light | IN1-5 state equal to «0» (if the power is on) |

## 7. Filter

## LPF1 action: Input filter

Cut-off frequency equal to 100 Hz for IN1-5

## LPF2 action: Filter 1-254

Cut-off frequency range to attenuate lower-frequencies noise: from 4 Hz to 1 kHz . The noise is overlapped to the desired digital signal.


## USER MANUAL - Z-D-IN

## 8. EASY SETUP

To configure the Z-D-IN download the Easy Setup PC software from the Seneca Website:
http://www.seneca.it/en/linee-di-prodotto/software/easy/easy-setup/


